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As the effects of climate change accelerate, risk 
managers in government and business are finding it 
increasingly challenging to understand and mitigate 
the human and economic risks of natural hazards 
such as wildfires and cyclones. New developments 
in artificial intelligence promise solutions.

Phil Ormrod

Using AI to mitigate risks  
from natural hazards



As the effects of climate change accelerate, risk managers in government 
and private enterprise are faced with increasing challenges as they seek to 
mitigate an uncertain future. 

In May this year, the European Forest Fire Information Service reported 
that 2022 was the second-worst wildfire season on record, surpassed 
only by 2017. Given the current situation in Greece, this benchmark will be 
surpassed before long. And over four days in early June, the global average 
air temperature record was broken three times; previously, this had only 
happened twice over the preceding six years.

In other words, the pace of change is rapid and accelerating. And with vast 
human, ecological and financial consequences – last year’s wildfire season 
was estimated to have cost €2 billion – there is a huge imperative to model 
and understand the hazards that might result. But doing so with enough 
accuracy and efficiency is difficult.

Global climate models, for instance, can perform hundreds of billions or 
even trillions of calculations to model large-scale weather patterns at half-
hour intervals over a hundred years – but can’t realistically be run at a high 
enough resolution to satisfy a risk manager seeking to understand the 
variation in storm surge probability along a particular coastline.

And with a run time of weeks or months depending on the hardware 
available, the process is difficult to iterate effectively. Iteration – running 
the same predictive model a number of times – is vital to the accuracy and 
reliability of its results.

It’s also challenging to keep track of unfolding events in real time. A huge 
range of resources are available to track wildfires as they unfold – from 
satellite arrays to social media. But cleaning, weighting and integrating 
noisy and heterogeneous data sets is a real challenge under such intense 
time pressure.

At Imperial, experts across a range of disciplines have found that AI tools 
can help them address these challenges: to improve long-term modelling 
for events like hurricanes and tropical cyclones, hedge risk in vulnerable 
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investments like forestry, and create systems that can model natural hazards 
as they develop – and the effects of potential responses, too.

Machine learning offers unprecedented power to understand complex 
relationships between the enormous numbers of variables in current climate 
models. Natural language processing enables crowd-sourced information 
to direct satellite surveillance; and convolutional neural networks can 
process the resulting information with striking accuracy. Digital twins allow 
responders to simultaneously trial a range of measures against an unfolding 
emergency.

And as the frontiers of this work continue to develop, researchers continue 
to improve the explainability of AI-based predictions, as well as ensuring 
that they reflect real conditions grounded in physics as well as statistical 
probabilities.

AI tools help crisis managers combat wildfires in real time
As the effects of climate change gather pace, wildfires are growing in 
frequency and intensity around the world: in Greece and the wider 
Mediterranean; in California and Canada; even Siberia and the  
Russian Arctic.

Responders can draw on vast streams of data to track them as they evolve; 
but filtering and assessing this information fast enough to make effective 
decisions is a huge challenge.

Dr Rosella Arcucci, a member of Imperial’s Department of Earth Science and 
Engineering and Data Science Institute, leads the Data Assimilation and 
Machine Learning (Data Learning) research group. As a mathematician and 
computer scientist, one of her key projects is to implement the operational 
use of AI tools in managing just this kind of natural hazard. As she puts it: 

“The key word is usability: even when you’re doing fundamental research, 
you always keep an eye on the operational priorities. For example, in 
healthcare, speed can be important but not crucial – it’s accuracy that’s key. 
With wildfires, that’s not the case: you have to be really fast. So we work on 
efficiency. What’s slowing us down?”

The first answer is knowing where to look. And the solution is perhaps a 
surprising one: natural language processing, a branch of AI more often 
associated with chatbots. Dr Arcucci explains: “We’ve built a nowcasting 
tool: a social media scraper, with filters for language, bots and so on, that 
picks up on wildfire-related keywords and uses sentiment analysis, then 
sorts and geolocates the relevant posts. Using this, we can aim the available 
satellites. That saves us something like three hours, which in this situation 
is a lot.”
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In other words, Dr Arcucci and her team are able to crowd-source from a vast 
but extremely noisy pool of data – the endlessly diverse public conversation 
on social media – and use a proven AI tool to quickly and simply focus on 
what’s relevant.

Wildfire surrogate model
Having located the fire, responders need a tool that can respond to its 
development. This is the Wildfire Surrogate Model: a digital twin that can 
quickly be assembled by integrating the targeted satellite imagery into a 
pre-trained neural network, constrained by mathematical representations  
of wildfire physics. 

A digital twin is a virtual representation of a real-world entity or process, 
which can forecast how its counterpart will develop and respond to 
interventions. A neural network is a type of artificial intelligence system 
inspired by the structure of the human brain, which processes information 
through layers of nodes, like virtual neurons. As the network learns, it 
builds connections between these nodes, whose weight depends on the 
significance of the relationship they represent. In deep learning, neural 
networks are divided into multiple layers. With tens or even hundreds of 
layers of nodes, the connections between them can number in the hundreds 

Dr Rosella Arcucci, 
who leads the Data 
Assimilation and Machine 
Learning (Data Learning) 
research group.
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of millions, allowing the network to process huge amounts of data very 
quickly, and to recognise highly complex statistical relationships within it.

Using this technology, the Wildfire Surrogate Model can simulate the 
movement of the fire front and its response to different barrier placements, 
allowing responders to trial and choose between strategies. Crucially, it 
can do this thousands of times in a few minutes. Dr Sibo Cheng, a Research 
Associate in Imperial’s Data Science Institute and Department of Computing, 
has taken a leading role in its development. “Because the model is based on 
a neural network, learning directly from data rather than just replicating the 
physics, we can calibrate the model and be ready for operation 10,000 times 
faster,” he explained.

Of course, neural networks have already been deployed in many fields, 
not least in building the large language models that have dominated the 
headlines since the beginning of 2023. What’s distinctive about the Wildfire 
Surrogate Model is that the neural network is integrated into a wider design 
that integrates live data inputs, physics modelling and interventions by 
operators, creating a supremely adaptable AI partner that can support 
decision-making in an uncertain, high-stakes and rapidly evolving scenario. 

Machine learning + data assimilation = data learning
It isn’t enough to simply hoover up whatever data is available. In the 
complex, evolving situations implied by natural hazards, no single source 
is authoritative. So the model also integrates data science tools that assess 
inputs: weighting individual satellites by age and location, and whether 
their view is impeded by cloud cover, for example. And it continues to assess 
and modify these inputs as the situation unfolds. As Dr Arcucci explains: 

“One of the fundamental attributes of our brains is that they’re adaptive: they 
change their model of the world based on new information. For example, 
we’re about to cross a road we’ve identified as safe, when a car suddenly 
appears – so we don’t step out. Our model needs to assess and integrate 
new developments with the same speed.”

That includes retrospectively qualifying its own predictions as the situation 
unfolds to support or contradict them. Just as certain deployments of large 
language models like GPT-4 can learn from their interactions with users, so 
the Wildfire Surrogate Model evolves every time it’s deployed. 

Dr Arcucci sees this dynamic approach as fundamental to properly deploying 
neural networks more broadly. She describes it as ‘data learning’: machine 
learning supported by constant data assimilation. 

“The advantage is that neural networks themselves facilitate this approach,” 
she says. “In the past, the temptation was to simplify data in order to 
assimilate it – which always entails losing information. Now, you don’t have 
to do that: the network can sort the data itself.”
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From the next hour to the next century
Developed in partnership with UCLA and the Technical University of Crete, 
the Wildfire Surrogate Model has already been running for nearly two years 
of tests; Dr Cheng hopes that it will be ready for operational use within  
five years. Looking further ahead, the same team are in the early stages  
of developing a global wildfire forecasting model with the UK Met Office. 
 But longer timescales bring their own challenges – an issue that’s even 
more clearly illustrated by current challenges in climate modelling.

AI tools make climate models usable in real-life decision-making
Climate risk modelling is an excellent example of a field in which the greater 
processing speed and data volume enabled by AI tools can make research 
insight usable in an operational context.

“It’s hard to find teams who can bring together state-of- the-art science and 
financial engineering, which is what we really need to plan for the risks 
implied by unfolding climate conditions.”

As Associate Professor of Actuarial Finance at Imperial, Dr Enrico Biffis works 
on everything from sustainable forestry investment to innovative financial 
products in developing economies; as well as advising the World Bank and 
IMF; and he approaches all of this with a focus on real-world applications, 
where the risks studied place lives and large sums of money at stake.

“Climate risk modelling is a hugely challenging, multi-disciplinary space,” 
he explains. “It’s hard to find teams who can bring together state-of-the-art 
science and financial engineering, which is what we really need to plan for 
the risks implied by unfolding climate conditions.”
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Professor of Actuarial 
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This integration of skills is precisely what he’s pursuing with colleagues 
at Imperial’s Grantham Institute – Climate Change and the Environment, 
as well as Singapore Green Finance Centre, as they work on improving 
the resolution of climate models to offer high-detail predictions that risk 
managers can use to identify a level of variation in future hazards across 
specific regions.

Climate model resolution presents an ongoing challenge
The first challenge is to calculate risk in enough detail to support real-life 
planning. Professor Ralf Toumi, co-director of the Grantham Institute for 
Climate Change and the Environment, outlines the computational challenge 
in stark terms: ‘The challenge in climate modelling is to build projections 
with sufficient resolution to be useful, without demanding a level of 
computing power and time that makes the process impractical. Statistical 
methods, though much less intensive, don’t offer an acceptable substitute 
for dynamical modelling by themselves; but nor can we take a process that 
already involves performing billions of calculations over several weeks, and 
expand it by orders of magnitude.’ 

To understand how AI-assisted processes can help escape this trap,  
it’s worth first looking at the modelling process in more detail.

CMIP6 – the Coupled Model Intercomparison Project (Phase 6) – brings 
together sets of results (or ‘runs’) from around 100 different global climate 
models, produced to support the sixth International Panel on Climate 
Change (IPCC) assessment report in 2021. The resulting scenarios describe 
the possible evolution of the climate for the rest of the century, and 
underpin current research.

Most of the CMIP6 data comes from General Circulation Models (GCMs). 
These work by dividing the atmosphere, ocean and Earth’s surface into a 
3-dimensional grid, and mathematically calculating the actions of various 
forces and process within each unit given a set of starting points, as well 
as how it then affects those around it; and then repeating this at regular 
intervals or ‘time steps’. The process is called dynamical modelling. 

Factors modelled include surface pressure, wind velocity, water vapour, 
albedo and cloud cover – and, crucially, the effects of carbon emissions and 
other human-driven factors. The outputs offer a probability range for climate 
conditions in each grid unit at each time step: precipitation levels, wind 
speeds, average temperature and so on. 

Researchers tend to use a set of ‘pathways’ to compare the potential results 
of different emissions scenarios. The RCP8.5 pathway implies ‘business-as-
usual’ emissions that will lead to the Earth absorbing of 8.5 Watts of energy 
per square metre by 2100; there are intermediate scenarios at 6 and 4.5 
Watts; and RCP2.6 is the best case, which still implies an energy increase of 
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2.6 Watts per square metre. Each model will output its calculations on many 
factors – including warming – according to the conditions of the chosen 
pathway.

The problem is, the resolution of the resulting data is too coarse to inform 
much real-world decision making. At their most detailed, the CMIP6 
generation of models break the Earth’s surface into grid squares 100 km 
wide; an actuary pricing insurance against natural hazards might need to  
be 10 or 100 times more precise.

This is because the level of geospatial detail a model can provide is limited 
by the amount of computational power available. Working on the basis of 
half-hour intervals (a common value) for a period of 100 years implies more 
than 1.5 million calculation steps per grid square, or 75 billion for the entire 
globe at a resolution of 100km x 100km.

Given the further complexity of the calculations entailed in each individual 
step, it’s not surprising that climate research is a famously computing-
intensive field. A single run – say, modelling the global effects of the RCP8.5 
(‘business as usual’) emissions scenario until 2100 – can take weeks to 
complete, even on the specialised computing clusters available to leading 
institutions like Imperial.

Professor Ralf Toumi, 
co-director of the 
Grantham Institute – 
Climate Change and  
the Environment
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Enlarging this demand by several orders of magnitude simply isn’t practical. 
Instead, Dr Biffis and his collaborators have developed machine-learning 
techniques to downscale (or ‘zoom in’) CMIP6 data to a usable resolution – 
that is, to work with squares as small as 1km by 1km – without exponentially 
increasing the computational power required.

Machine learning enables precise and efficient downscaling
The key insight echoes that of the Wildfire Surrogate Model above: 
that it’s possible to design a machine-learning model to harness the 
efficiency of a statistical approach – simply seeking patterns in data and 
then extrapolating them – without sacrificing the greater accuracy and 
explainability of dynamical modelling, which uses mathematics to replicate 
and ‘rerun’ the actual physical processes that generate the data in the  
first place.

Concentrating on the Western Pacific, the team trained a series of machine-
learning tools to understand patterns in the variation between real historical 
climate data and ‘simulated observations’ from CMIP6 models – the results 
given when the models were asked to retrospectively predict historical 
climate conditions. 

These two sets of data – one real and observed, the other generated by 
mathematically replicating physical processes – both cover the same time 
period, and so they can be compared, using a process called quantile 
mapping. This involves comparing the distribution patterns within real and 
modelled datasets, and mapping the former onto the latter.

Trained to recognise these patterns of difference in minute detail, Dr Biffis’ 
machine-learning tools were then used to bias-correct the future scenarios 
projected by the climate models, based on their deviations from the 
historical data. In other words, the predictions were recalibrated based on 
their likely pattern of error – and because the real observations exist at a 
much higher resolution, the projected data could also be produced with 
much greater detail – in units measuring 1km×1km.

The results were finely-detailed sets of geospatial data, offering nuanced 
outlooks on climate variables across Indonesia, Malaysia, Thailand and 
the Philippines. And further analysis provided secondary insights into 
heightened tail risks: the chance of extreme events, a vital consideration  
for insurers, as well as broader changes in average.

It’s important to note, though, that the machine learning/statistical 
approach doesn’t replace dynamical modelling. Any missing physics in  
the coarser resolution global model can not be simply fixed by this statistical 
downscaling. However, the basis of the process is still the statistical 
replication of physical processes within the CMIP6 models. 
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Instead, what the researchers have done is harness the interpretative power 
of AI to extrapolate from this information with enough confidence to make 
real-world decisions – raising the precision of the data without requiring 
prohibitive computing power.

Computer vision can identify patterns in noisy and complex data
At the other end of the process, AI can also be harnessed to improve the 
data providing the starting points for such models, to make their resulting 
predictions more reliable.

Let’s return to Professor Ralf Toumi, whose own research offers a case in 
point. A physicist focussed on understanding tropical cyclones, he’s led 
the development of the Imperial College Storm Model (IRIS) : a parametric 
statistical model (that is, one whose results are constrained by set 
parameters – in this case, the relevant laws of physics) that predicts  
the probability of cyclone landfall across the planet.

It does this by generating millions of synthetic storms, in order to calculate 
the probability of a given magnitude or landfall location over periods as  
long as a thousand years. This provides the basis for a particular cyclone  
to be described as, say, a 1-in-200 year event (in other words, one with a 
0.5% probability of happening in any given year) – an important threshold 
for insurance capital allocation (the process by which insurers determine 
how much capital to hold in relation to different risk exposures, in order  
to meet their obligations in the case of a claim).

IRIS is built to be constrained by the actual thermodynamics of the 
atmosphere – particularly in the maximum intensity of the storms predicted. 
It can use predicted data from GCMs as the basis for this, but is substantially 
more accurate than them within its own specialism. 

That accuracy is partly underpinned by a key insight about usability, as 
Professor Toumi explains: “In a research context, people tend to be 
interested in modelling the whole life-cycle of a storm. That can entail a 
lot of margin for error. But what’s actually relevant for risk managers, in 
insurance and so on, is where it makes landfall, and what its intensity will  
be when it gets there. If you pick up the storm at its peak, and only model  
its decay, you can be much more precise.”

So where does AI come into this? In highly specific, targeted applications, 
its role is to help the model understand and apply key relationships and 
variables. For example, one of the first steps when estimating the intensity 
of a tropical cyclone and forecasting its track is locating its centre. This is 
as relevant to a model like IRIS as it is to understanding a real storm as it 
unfolds: providing accurate initial positions and characteristics generates 
more precise simulations. Satellite cloud imagery can be difficult to 
interpret, however.
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Professor Toumi has trained a series of convolutional neural networks  
(CNNs) to identify storm centres from the long-wave infra-red information  
in sequences of satellite photographs. CNNs (a sub-type of neural network) 
are often used in image recognition tasks, because rather than working on 
a pixel-by-pixel basis, they break an image into components and classify 
these – rather in the same way many cognitive scientists claim our own 
brains interpret incoming sensory information. The result is a process that’s 
better at identifying features relevant to classification, and doesn’t get 
swamped with the sheer volume of data in an image.

However, he’s keen to emphasise that the IRIS project only deploys AI in this 
kind of specific, limited way. “It’s important that the model itself remains 
transparent and accessible, and that we can explain its results in direct 
reference to specific physical phenomena – rather than just statistically.” 
This is in marked difference to the ‘black-box’ proprietary models used by 
many insurers – and arguably more useful in the context of more specialised 
risk management strategies, such as parametric insurance. These policies, 
triggering a fixed payout at a threshold event, rely on the ability to reliably 
model the probability of such specific thresholds being crossed. 

Explainability, accountability, efficiency
Explainability is a key focus of AI research right now. The projects explored 
here demonstrate that, as Dr Arcucci puts it, “the word means different 
things in different contexts.” She goes on: “For us, explainability means 
replicability.” In other words, if the Wildfire Surrogate Model is consistent  
in its predictions – and across the high volume of iterations it’s capable  
of running in a short period of time – it can be relied upon by responders  
in the heat of the moment.

That said, Dr Sibo Cheng is currently working on causal explainability 
within the model’s neural network. “We’re using tools to determine the 
most important neuron in the gradient descent,” he explains. “It’s like 
backpropagation: by following the route of the data through the network as 
it’s processed, we can identify the most important node. And as each node 
is associated with a particular phenomenon or process, we can then identify 
that process as salient.’

In the case of climate risk, these approaches are still grounded in robust and 
continuously evolving dynamical models of the physics. What the AI tools 
do in each case is make the model more usable: in determining better data 
to feed it in the first place, or in pulling out enough detail to make reliable 
real-world judgements. Dr Enrico Biffis has also used a similar approach to 
determine which climate model to deploy in the first place: using the trained 
machine learning tools to assess the statistical basis of different models 
and their appropriateness to a given use case. When it takes days to run  
a model, this pre-judgement offers valuable efficiencies.
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The result of applying these techniques is that planners and decision-
makers can make judgments with more confidence in the face of an 
increasingly uncertain future, in which exponential change becomes the 
norm. Faced by ever more complex situations, the challenge is to harness 
AI’s ability to find the patterns and insights we need to keep moving 
forwards. Across Imperial’s community of researchers, there’s plenty  
of evidence that we can meet it.
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Contact Imperial Business Partners
If you would like to know more about Imperial Business Partners 
and our futures consultancy, Imperial Tech Foresight, we’d love  
to begin a conversation with you.

ibp@imperial.ac.uk | imperial.ac.uk/ibp
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